Tag Archive: API
API Frac Sand Standards and Microproppants
Recently, smaller grains of sand are in demand in the oil and gas markets. While fracking processes started with coarser grains of sand, the market is trending toward finer mesh size silica grains.
At first, fracking used silica sand with mesh such as 16-30, 20-40, and 30-50. In the years since, however, the markets have made 40-70 and 70-140 mesh sizes the default standard. In this article, we’ll discuss the role of frac sand and other proppants in the oil and gas markets, as well as what the industry can expect in the race to mine finer silica sand.
What Is Frac Sand?
Frac sand is a particular type of sand that’s used in hydraulic fracking. Shale and other low-permeability reservoirs may have relatively low amounts of fossil fuels, but they have enough to be increasingly viable in competitive oil and gas markets. Both oil and natural gas markets use frac sand to prop open wells to produce natural gas, oil, and other energy-rich fluids from fracking sites.
Frac sand, which is crystalline sand derived from high-purity sandstone, has unique properties that oil and gas producers need. The quartz grains are naturally occurring, crush-resistant, and come in an extensive range of grain sizes for different operations. Frac is purely silica quartz, whereas other sands—like most intercoastal sands—are a mix of multiple different rocks and minerals.
Ultimately, silica sand offers highly consistent resistance to crushing and physical force to a degree that other sands can’t provide.
Proppants in the Oil and Gas Markets
Fracking processes break open shale reservoirs to extract natural gas, oil, and natural gas liquids. Once a site has been discovered, companies shoot highly pressurized jets of water into the reservoirs to create cracks and extract fossil fuels from the pores of the reservoir.
Because these cracks are under tremendous pressure from the surrounding rocks and earth, they will reseal as soon as water pressure diminishes. That’s where silica sand and other proppants come in: the material fills the widening crack to hold it open, even when the water jet moves on. This allows oil and gas companies to continue collecting material from the well for as long as possible. Because silica sand is resistant to crushing, the reservoir can’t easily reseal, and companies can more efficiently collect fuel for processing.
The Impact of Mesh Sizes
Frack technology is continuing to grow and evolve, and so is market access to increasingly specific varieties of silica sand. Companies are gradually shifting to prefer finer grains of frac sand.
Sand is measured through standardized sieve meshes that allow grains of different sizes through for sorting and categorizing. At first, larger mesh sizes, and correspondingly coarse sand grain sizes, were sufficient to mete out sand that allowed companies to extract fossil fuels from shale reservoirs.
Today, many companies use advanced fracking practices and smaller grain sizes to increase the proppants’ grip in the reservoirs and collect more fuel. Finer sands allow companies to both increase daily barrel production and pull from the same well longer.
407-0 and 70-140 grain size silica sand can push deeper into fine cracks and gaps in shale. Once the sand locks into place, it can hold the crack open and continue to wedge deeper into the shale.
How can finer sand go deeper into the well?
Because fracking uses pressurized water to form the cracks in the first place, the addition of sand quickly forms a slurry. This slurry is slow, thick, and unable to reach into every crevice of the new cracks. Finer sand, however, is more resistant to forming a thick, slow slurry. It has a better Settling Velocity Rate (SVR) and goes deeper into cracks before the velocity decreases.
Not only can companies reach deeper into a reservoir, but the finer sands increase overall surface area coverage of the shale cracks. The bigger the area of exposed pores, the more natural gas, liquid, and oil the company can extract per day and per well.
Frac Sand Mining
Fracking processes rely on finely controlled water and sand to extract as much fuel as possible from shale and low-permeability reservoirs. The water creates cracks and empty spaces in the rock formations, and the sand props the gaps open for longer extraction windows.
This sand demand isn’t negligible; each well requires up to 10,000 tons of sand. With the developing need for finer sand, the demand is also concentrating on just a few locations that can supply high-purity silica sand grains.
One of the most reliable locations for high-purity silicon dioxide sand in the United States is the region at the border of Minnesota and Wisconsin near the Great Lakes. This region produces highly spherical silica sand that’s close to the surface and consistently high quality.
Frac Sand From MS Industries II, LLC
We specialize in providing both high-quality materials and logistics management. Our team delivers silica sand at your company’s requested specifications and on time, every time. Contact our team today to learn about our frac sand solutions or request a quote to get your order started.